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The structure of molecular networks is believed to determine important aspects of their
cellular function, such as the organismal resilience against random perturbations. Ultimately,
however, cellular behaviour is determined by the dynamical processes, which are constrained
by network topology. The present work is based on a fundamental relation from dynamical
systems theory, which states that the macroscopic resilience of a steady state is correlated with
the uncertainty in the underlying microscopic processes, a property that can be measured by
entropy. Here, we use recent network data from large-scale protein interaction screens to
characterize the diversity of possible pathways in terms of network entropy. This measure has
its origin in statistical mechanics and amounts to a global characterization of both structural
and dynamical resilience in terms of microscopic elements. We demonstrate how this approach
can be used to rank network elements according to their contribution to network entropy and
also investigate how this suggested ranking reflects on the functional data provided by gene
knockouts and RNAi experiments in yeast and Caenorhabditis elegans. Our analysis shows
that knockouts of proteins with large contribution to network entropy are preferentially lethal.
This observation is robust with respect to several possible errors and biases in the experimental
data. It underscores the significance of entropy as a fundamental invariant of the dynamical
system, and as a measure of structural and dynamical properties of networks. Our analytical
approach goes beyond the phenomenological studies of cellular robustness based on local
network observables, such as connectivity. One of its principal achievements is to provide a
rationale to study proxies of cellular resilience and rank proteins according to their importance
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1. INTRODUCTION

Recent experimental efforts have highlighted the
pervasiveness of molecular networks in the biological
sciences (Alm & Arkin 2003; Proulx et al. 2005. While a
large number of molecular interactions and associations
have been mapped qualitatively, we are yet to under-
stand the relation between the structure and the
function of biological networks that control the
information flow and regulation of cellular signals.
One particularly important functional character-
ization is the resilience of an organism against external
and internal changes (Kitano 2004; Stelling et al. 2004),
which, at the molecular level, amounts to perturbations
in the network parameters. In recent experiments, this
resilience has been studied in direct response to gene

*Author for correspondence (manke@molgen.mpg.de).

The electronic supplementary material is available at http://dx.doi.
org/10.1098/rsif.2006.0140 or via http://www.journals.royalsoc.ac.
uk.
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deletions or RNA interference (Giaever 2002; Kamath
2003). It has been demonstrated that a large number of
such network perturbations does not result in any
phenotypic variation under a given experimental
condition. In other words, different networks show the
same apparent phenotype. This observation has led to a
simple classification of proteins into ‘viable’ and
‘lethal’, according to whether the organism survives
the removal of this component or not. In the following,
we also refer to the latter as ‘essential’ proteins.

If network topology characterizes behavioural com-
plexity, one may ask if there is any topological correlate
for lethality. The seminal works of Barabasi and
colleagues (Barabasi & Albert 1999; Albert et al.
2000; Jeong et al. 2001) have revived and spawned
various efforts (Rapoport 1963; de Solla Price 1965) to
characterize the structural properties of networks and
relate their topological features to experimentally
observed resilience. These phenomenological descrip-
tions have highlighted certain commonalities in net-
work structures and provided considerable insight into

© 2006 The Royal Society
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the possible mechanisms of network evolution.
However, the central observables, such as degree,
invoked in these structural models, do not derive from
any systematic theory, and the basis for their applica-
bility to the characterization of functional resilience has
been difficult to elucidate.

Here, we present a systematic approach to this issue
based on methods from statistical mechanics and
ergodic theory. This provides a natural conceptual
framework to derive macroscopic parameters that
characterize certain structural and functional proper-
ties of the network. The key idea and underlying
assumption of our work is that biological processes
typically operate at steady state, where characteristic
macroscopic observables (the ‘phenotype’) remain
constant for relatively long times. This, however, does
not imply that the underlying microscopic variables
(such as protein activities and concentrations) are
static, but rather that their complex and continuous
interplay results in a stable phenotype that can be
experimentally observed. Indeed, it is the diversity and
uncertainty of the microscopic processes that determine
the resilience of macroscopic steady states against
perturbations. In the context of the ergodic theory of
dynamical systems, this uncertainty is quantified by
the dynamical entropy (Kolmogorov—Sinai invariant).
The significance of this concept for studies of biological
systems resides on a fluctuation theorem for networks,
an analogue of the fluctuation—dissipation theorem in
statistical mechanics (Demetrius et al. 2004). Accor-
ding to this theorem, changes in network entropy are
positively correlated with changes in the resilience of
the macroscopic system against microscopic pertur-
bations. As a great simplification and in recognition of
our ignorance about the actual molecular events, we
assume that the microscopic processes on the network
are Markovian. This leads to characterization of
network entropy as a measure of the diversity of
molecular interactions that define the system. In recent
work (Demetrius & Manke 2004), we applied the
fluctuation theorem to a class of biological networks
and demonstrated that, at the structural level, net-
works with higher entropy disintegrate less rapidly
under random node removal. Such topological resi-
lience is commonly characterized in terms of an increase
in the average shortest path length or the decrease in
the fractional size of the largest connected network
component when a fraction of nodes is deleted (Albert
et al. 2000).

Our formalism does not aim to specifically describe
one or the other topological features, such as degree or
the shortest path lengths, but rather considers them as
correlates of an underlying functional property, accor-
ding to which networks can be ranked with respect to
their resilience against random perturbations. This
approach naturally extends to situations where the
network is described in terms of structure and dynamics
and where the directionality and weights of edges are
known. How can this global entropic characterization of
the network help to make predictions about individual
proteins in the context of their interaction network?

To answer this question, we first recall the definition
of the dynamical entropy for a Markov process,

J. R. Soc. Interface (2006)

P = (p,;;), which is given by (Billingsley 1965):
H = _Z m;pij log pj;.

i

(1.1)

Here, p;; denotes the transition probabilities and ; are
the components of the stationary distribution (see §2
for more details). It should be noted that there are
many other ways to investigate complex dynamical
systems through microscopic modelling, such as differ-
ential equations, Boolean dynamics or cellular auto-
mata, to name a few. Our simple stochastic description
of dynamical uncertainty is based on random walks on
the network and has a long tradition in the analysis of
diffusive systems (Berg 1993). This approach serves the
larger goal of deriving macroscopic properties (such as
diffusion laws and thermodynamic relations) from the
microscopic dynamics of a test particle. In our context,
the dynamical entropy of a Markov process charac-
terizes the diversity of possible pathways and (through
the fluctuation theorem) is related to the system’s
response to perturbations.

In order to rank individual network elements, we use
the decomposition of network entropy into contri-
butions from all individual proteins

H= Z w, H;,

where H; is the Shannon entropy associated with
protein 7. This decomposition suggests that network
elements with a higher contribution to the overall
entropy have a larger effect on the network’s resilience
and functionality, when removed. If only the network
topology is known, the entropic-ranking reflects the
impact of node removal on network integrity, i.e.
removal of proteins with higher entropic contribution
causes a larger change in topological and functional
integrities. In terms of functional perturbation experi-
ments, we will test the hypothesis that proteins with
higher entropic contribution to the cellular network
more frequently have a lethal phenotype when they are
impaired (knockout/knockdown). Previously, this
question has been addressed in terms of various notions
of network centrality, such as degree (Jeong et al.
2001), shortest path length (Yu et al. 2004) and more
recently betweenness (Hahn & Kern 2005). While these
concepts provide useful insights into principles of
network organization, they do not derive from any
general theory, hence, the range of their applicability
can only be tested empirically. On the contrary, our
entropic formalism is embedded in a theoretical frame-
work, which analytically characterizes robustness. It
also provides a rationale why these ad hoc measures are
sometimes convenient proxies for network resilience
and how they could be extended.

(1.2)

2. METHODS
(a) Definition of network entropy

The concept of network entropy was introduced by
Demetrius et al. (2004) and applied to network
modelling by Demetrius & Manke (2004). To be
self-contained, we review the basic ingredients of this
formulation. Every (weighted and directed) network
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can be specified by its adjacency matrix A= (a;). The
Perron—Frobenius eigenvalue A(A) is the largest eigen-
value of A and the corresponding eigenvector v is
strictly positive for each strongly connected graph
cornponent.1

The dominant eigenvalue is a topological invariant
of the adjacency matrix and is known to satisfy a
variational principle, which is formally analogous to the
minimization of the free energy in statistical mechanics
(Arnold et al. 1994). In order to characterize this
principle, we introduce the notion of a stochastic
process P = (p;) which is said to be compatible with
the adjacency matrix A, if > p;=1 and
p;j =0 a;=0. This requirement amounts to the
idea that microscopic variables, e.g. protein activities
or concentrations, can only change in response to
changes of their interaction partners. In other words,
information can only flow along the interacting
proteins. Here, we ignore the possibility that certain
protein modifications may trigger global changes, for
example, through changes in cellular parameters, such
as pressure or salinity.

The stationary distribution, , is defined as the left-
hand eigenvector associated with the largest eigenvalue
1 of the stochastic matrix P:

7P =m. (2.1)
The stationary distribution, m, characterizes the long-
time invariant behaviour of the Markov process
described by matrix P. If we assume ergodicity, i.e.
irreducibility of A and P, then the components m;
satisfy m;> 0 and denote the relative frequency with
which the random walk on the network visits node 3.
Now, the variational principle for A can be written as

log 4 = sup _Z m;py log py + Z m;p; log ay |,
iJ ij

(2.2)
with respect to all compatible processes P = (p;;). It has
been shown (Arnold et al. 1994) that, for strongly
connected networks, the supremum is attained for a
unique matrix P = (p;), where
aijvj

A’Ui

With this choice of the matrix P, equation (2.2)
becomes

log 4 = _Z iy log py; + Z ;P log ay;,

] ]

pij = (2~3)

(2.4)

which can be verified by explicit computation.
Equation (2.4) can be written in the form

log A = H(P) + &(P). (2.5)

This links the topological invariant A to the
network entropy H(P) and the ‘potential’ @(P)=
>_ijTiD; log a;;. The relation given in equation (2.2) is
an analogue of the Gibbs wvariational principle in
statistical mechanics (see Arnold et al. 1994). It should

'In a strongly connected (irreducible) graph component every node
can be reached from every other node.

J. R. Soc. Interface (2006)

be noted that, for Boolean matrices, the second term in
equation (2.4) vanishes (#=0) and equation (2.2)
corresponds to a maximum entropy principle for the
most parsimonious choice of p;. Accordingly, we can
now write

H(P) =log = _Z Py log Py = Z mH;,  (2.6)
ij i

where H; is the standard Shannon entropy defined for
each node 7 and m; are the components of the stationary
distribution, as defined by equation (2.1).

(b) Fluctuation theorem

The key motivation for our work is a set of theorems
from statistical physics and dynamical systems theory,
which relate observables at steady state to the
relaxation properties of a perturbed system (measured
away from steady state). To give an equilibrium
example, it is well known that fluctuations at equili-
brium determine the return rate to the equilibrium
state (Kubo 1966). There are many extensions of this
fundamental relation. In a recent work (Demetrius
et al. 2004), a fluctuation theorem was derived which
invokes the entropy as a measure of microscopic
variability and relates it to the macroscopic resilience
of the system. This result can be formally described as
follows. Consider a perturbation in some microscopic
variable. Such changes will generally result in
deviations of a steady-state observable from its
unperturbed value. Let P.(t) denote the probability
that the sample mean deviates by more than ¢ from its
unperturbed value at time ¢ As ¢ increases, P,(t)
converges to zero and we define the fluctuation decay
rate, R, as

(2.7)

t—o0

1
R =1lim [—? log Pe(t)].

Large values of R entail small deviations of observables
from the steady-state condition and small values of R
correspond to large fluctuations around its mean value.
Thus, R characterizes the insensitivity of a macroscopic
observable in the face of changes in the underlying
parameters.

The fluctuation theorem (Demetrius et al. 2004)
asserts that changes in R are positively correlated with
changes in network entropy:

AHAR> 0. (2.8)

Here, entropy, H, is defined at steady state, while R
determines the behaviour away from the steady state.
The fluctuation theorem implies that an increase in
entropy entails a greater insensitivity of an observable
to dynamic or structural perturbations of the network.

(¢) Protein—protein interactions
and lethality data

We study both a single-cellular organism (budding
yeast) and a multicellular worm (Caenorhabditis
elegans), for both of which binary interaction data
(yeast-two hybrid) as well as functional profiles are now
available in large scale.
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For Saccharomyces cerevisiae, we retrieved a
bidirected interaction network of 3854 proteins with
11 912 yeast-two hybrid interactions® from the Munich
Information Center for Protein Sequences (MIPS)
database (Mewes 2002). From the same source, we
also downloaded lethality data from gene disruption
experiments (Giaever 2002) (6203 open reading frames
(ORFs)=05033 viables+ 1170 lethals). The intersect of
these two datasets contained 3741 proteins, for which
we had both interaction data and a phenotype
annotation. Of these 3741 proteins, 681 are annotated
as having a lethal phenotype when removed. For 3534
ORFs, we also know one of the eight compartmental
localizations, as defined by Huh et al. (2003).

For C. elegans, we used the yeast-two hybrid data
from the work of Li et al. (2004), which we retrieved
from wormbase (Chen 2005). This constituted of 2800
proteins and 8740 interactions. It should be noted that
the interaction data emerges from the same principle
technique for both yeast and worm. However, the
phenotype data for worm is determined differently,
using the RNAI technology, as employed by Kamath
(2003). We use the data from their supplementary
materials and focus on the distinction between 17 491
viable proteins and 1170 lethals. After intersection with
the protein interaction data, we have 2023 proteins out
of which 322 have a lethal phenotype when their
production is impaired through RNA interference.

(d) Statistical analysis

Each topological observable gives rise to a ranking
scheme of proteins. Unlike previous works, which have
studied the correlation of protein essentiality with
various measures of protein ‘centrality’, we rank
proteins according to their contribution to overall
network entropy. There are several different ways to
assess whether a given ranking scheme of proteins
carries any information about their functional classi-
fication. In earlier work (Jeong et al. 2001), this
question was addressed by simply comparing the
fraction of essential proteins in arbitrary bins of highly
and lowly connected proteins. More systematically, the
same question can be addressed using the Fisher’s exact
test for any number of top-ranking proteins. This is
further explained and utilized in the electronic supple-
mentary material. In the main text, we follow
yet another approach and test the null hypothesis
that the entropy values for essential and non-essential
proteins are drawn from the same underlying distri-
bution against the alternative hypothesis that
essential proteins are derived from a distribution
function not smaller than that of non-essential proteins
(Kolmogorov—Smirnov tests).

(e) Network resampling

For some of our analyses, we require an ensemble of
random networks where all proteins retain their precise

2While much of the experimental data is generated in an asymmetric
fashion, we always interpret interactions as bidirected.

J. R. Soc. Interface (2006)
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Figure 1. In the main figure, we define five classes of proteins
(100 proteins in each) according to their rank with respect to
entropic contribution in the interaction network of C. elegans:
1-100, 101-200, .... In all these high-ranking cases, the
fraction of essential proteins is significant. The expectation
from 100 random proteins is shown as horizontal lines (4
1s.d.). The inset shows the same analysis for taking larger
bins (ranks 1-500, 501-1000, 1001-1500, 1500-1838). Again,
we can see an enrichment for high-ranking proteins, while
there is an under-representation of essential proteins for
proteins with small entropic contributions (for ranks greater
than 1000). In table 1, we give a detailed statistical account of
this simple observation.

node degree. To this end, we apply an edge-swapping
algorithm introduced by Maslov & Sneppen (2002).
The basic idea is to start from a given network and
switch two randomly chosen links if they do not
introduce self-loops or multiple edges. To avoid
autocorrelations from measurements on similar net-
works, 50 000 such edge swaps are taken between
subsequent measurements. In this way, we generate
1000 random networks from which the distribution of
relevant observables can be determined.

3. RESULTS

(a) Lethality correlates with entropic
contribution

The basic question, which we address in this paper, is
whether the entropic characterization can predict the
phenotypic outcome of a gene disruption based on the
overall position of the protein in the interaction
network. Given the qualitative character and the
large error rates of present experimental techniques,
the actual goal is more modest, as we can at most expect
to see an enrichment of essential proteins in ranked lists
of proteins, which we deem important based on their
contribution to network entropy.

As a first simple step, we bin proteins into several
classes of high and low entropic contributions and
determine the fraction of essential proteins among
them. Figure 1 shows that proteins with high
contribution to overall entropy are preferentially
essential compared to random expectations, while
proteins with small contributions are less frequently
essential than expected. This simple observation can
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Table 1. Summary of our statistical tests for several background models and network observables (entropic contribution, ; H;;
degree, k; and inbetweeness, I;). (Small p-values signify that the distribution of the observed values is significantly larger for
essential than for non-essential proteins (Kolmogorov—Smirnov test). For each background model, we denote N, as the number of
essential proteins and N, as the number of non-essential proteins in the background. The basic tests for yeast and C. elegans
(rows 1 and 4) should be compared with the more sophisticated background models, in which (a) the network links have been
randomly rewired while maintaining the individual degree of a protein (rows 2 and 5), (b) the compartmental distribution of the
background has been chosen to match that of essential proteins in yeast (row 3) and (¢) where 50% of links have randomly been
added/removed to model false negative/positive errors (rows 6 and 7). As a sanity check, we also performed these tests on a
network with randomized node labels, for which we do not expect any significant deviations (last row).)

(Ne, N,,) p(m;H;) p(k;) p(1;)
yeast (715, 2807) 4.2X107° 1.6Xx1073 1.6X1073
yeast, randomized links (715, 2807) 4.8X1074 1.6X1073 6.5%x107%
yeast, compartmental bias (583, 560) 2.2x107° 6.2x10"° 1.5X107 2
C. elegans (372, 1466) 9.1x10 " 4.9x107° 3.9x107°
C. elegans, randomized links (372, 1466) 1.8x107? 4.9x107° 4.3x107°
C. elegans, +50% random links (396, 1611) 1.3X107° 8.4%107° 6.3x107*
C. elegans, —50% random links (236, 826) 4.6x107* 4.6x107* 6.7x1074
C. elegans, randomized labels (368, 1480) 0.956 0.977 0.796

be made more quantitative in several statistical tests
as shown in table 1 and in the electronic supple-
mentary material. This demonstrates that the net-
work property ’entropic contribution’ contains a
significant amount of information about the functional
property, ’essentiality’. It can also be seen that the
entropic contribution, m;H;, accounts for more essen-
tial proteins than traditional observables, such as the
degree, k; or the in-betweeness, I;. This improvement
is due to an improved ranking of lowly connected
proteins as is further discussed in §3d.

We want to stress that this observation is not
equivalent to strong positive predictive power, which is
generally low (less than 40%). This is not surprising,
given the insufficiencies in the current interaction data
and functional screens, as well as the simplicity of
our model. For a more detailed received operating
characteristic (ROC)-curve analysis, we refer the reader
to the electronic supplementary material.

(b) Effect of errors in protein interaction data

The observed correlation between entropic ranking and
lethality assignments should be seen in the light of
possible errors. The large-scale interaction data we
have used are subject to sizeable error rates, both in
terms of missed interactions (false negatives) and
predicted interactions, which do not occur in physio-
logical conditions (false positives). To estimate whether
the observed enrichment of essential proteins with high
entropic values is robust against such errors, we
randomly added (deleted) 50% of all interactions and
re-analysed the modified networks. This gave rise to a
new ranking of proteins, which we compared to the
fixed assignment of essential /non-essential proteins. As
shown in table 1, such drastic changes resulted in larger
p-values, but still significantly better than random
assignment. We conclude that the observed enrichment
is robust against the rather large error rates commonly
associated with yeast-two hybrid data.

J. R. Soc. Interface (2006)

(¢) Possible biases in experimental data

Several biases could affect the lethality analysis
presented above. Notably, the observed correlation
could be simply a secondary effect caused by other
correlations between experimental interaction data and
functional data for essential proteins. For example, in
yeast, we find that there is a strong enrichment of
essential proteins with nuclear location (see table S1 in
the electronic supplementary material). If the network
data obtained from yeast-two hybrid screens are
equally biased with respect to compartmental location,
the observed enrichment may simply be a secondary
effect. We explicitly account for this possibility by
choosing a more sophisticated background model, in
which the non-essential proteins are selected randomly,
while still respecting the compartmental distribution of
essential proteins (foreground). As expected, we see
that this results in an increase of the p-values compared
to the simple test (table 1, first and third row).
However, essential proteins still show significantly
higher values of m;H;, which cannot be accounted for
by compartmental bias.

This analysis is further elaborated upon in the
electronic supplementary material, where we also
investigated a possible correlation of 7, H; with protein
abundance. Our analysis for abundance data in yeast
(Huh et al. 2003) shows that the entropic contribution
of a protein is not correlated with its abundance (see
figure 7 in the electronic supplementary material).
Therefore, we conclude that our enrichment analysis is
not significantly biased toward more or less abundant
proteins.

(d) The role of protein connectivity

Many structural network observables have been
suggested in the past and investigated with respect to
their functional implications. While none of these
measures provides a powerful tool to predict functional
properties, some have helped to highlight certain
common structural features and possible evolutionary
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Figure 2. Here, we show (for C. elegans) that connectivity and
network entropy are correlated, but distinct from one
another. For the process defined in equation (2.3), proteins
with high degree tend to have high entropic contribution. On
the other hand, there are also lowly connected proteins with
high contribution to network entropy and hence dynamical
stability. A small red dot was added to highlight essential
proteins.

mechanisms (‘design principles’). Since the degree of a
protein has arguably received the highest attention, we
wish to use this section to highlight similarities and
differences of our approach with degree-based methods.
In the electronic supplementary material, we extend
this discussion to other structural observables, such as
in-betweeness, also (Freeman 1977).

The dynamical properties of the effective process
defined in equation (2.3) entail that nodes with high
in-degree tend to have larger values of 7;, and nodes
with high out-degree tend to have large H,;. For
undirected networks (such as protein interaction net-
works), out- and in-degrees coincide and result in a
correlation of large degrees with what we call large
entropic contribution, m;H;. This expectation is
confirmed by an explicit calculation of these quantities
in the protein interaction network of C. elegans, figure 2.
This figure shows that there is a strong correlation
between the degree k and m; H;, especially when both are
large. From this perspective, one can now better
understand the apparent success and relevance of
degree-based structural measures in studies of
functional properties. We would like to advocate the
view that the degree and other structural observables
can be considered as correlates of underlying dynamical
properties, such as the stability of a dynamical process
to random perturbations.

Having outlined the similarities between the
entropic characterization and the degree-based
method, we would now like to address in more detail
their differences. The local connectivity of a protein is
an important, but not the only, determinant of its
entropic rank. First, we wish to illustrate some of the
differences through concrete examples. Gei-16
(T17H7.5) is an essential protein required for
embryonic development and morphogenesis in
C. elegans. Based on yeast-two-hybrid interaction
data (Li 2004), it is top-ranked by both the entropic
scheme and the degree-based method (105 interaction
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partners). At the other extreme, consider the heat-
shock protein 4 (hsp-4; F43E2.8), which is essential,
but only interacts (in the yeast-two hybrid screen)
with two other proteins: a signalling protein
(Y51H4A.17) and lin-5 (T09A5.10) which is required
for mitosis and cytokinesis, and inhibition of which is
also lethal according to Kamath (2003). Most
notably, from a structural perspective, these two
interaction partners are themselves highly connected
(16 and 8 partners, respectively). On the contrary,
the viable lipid transporter ckc-1 (T27A10.3) also has
only two interaction partners, but their connectivities
are equally low (degree 1 and degree 2). The entropic
characterization can account for such differences in
the neighbourhood structure by ranking hsp-4 much
higher (rank 360) than ckc-1 (rank 780).

These examples only illustrate that our analysis
yields a different ranking of proteins within their
context of global network, especially for lowly con-
nected nodes. We will now investigate systematically
how these differences translate into different corre-
lations with the lethality assignment. In particular, we
ask whether essential proteins have higher entropic
values not only with respect to non-essential proteins,
but also compared to non-essential proteins with the
same degree distribution. To this end, we repeat the
above analysis for a subset of random network
realizations, in which all proteins retain their precise
degree (see table 1, rows 2 and 5). The significant
increase in the p-value (rows 1— 2, rows 4—5)
illustrates that the entropic observable carries more
information about essential proteins than degree,
information which is lost during the randomization
process.

Within the framework of multivariate statistics, this
question may also be addressed by a partial correlation
analysis. To this end, we consider degree and in-bet-
weeness as possible confounding variables and account
for their effect on the observed correlation between
entropic contribution and essentiality. This results in
only a small decrease of the correlation and confirms
that entropic contribution carries additional infor-
mation, when degree and in-betweeness are controlled.
Moreover, we have performed a multiple logistic
regression including all three variables (entropic
contribution, degree and in-betweeness) and find that
the entropic contribution is the most important factor,
while the addition of degree or in-betweeness does not
improve the logistic model. We refer the reader to the
electronic supplementary material for further details
and a complementary analysis of the same issue from
the perspective of enriched essential proteins in top-
ranking lists.

We conclude that our entropic observable accounts
more effectively for differences in the network neigh-
bourhood, which is especially important for weakly
connected nodes. In terms of positive predictive power,
the improvement is marginal, but the comparison
serves us to illustrate differences between the chosen
observables. None of the presented methods (including
our own) has a strong predictive power over functional
properties, such as ‘lethality’. We do not believe that
current interaction data already allow for a meaningful
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competition between those simple models at the level of
prediction accuracy, but rather at the level of
motivated hypotheses and their ability to generalize
to more quantitative data.

4. CONCLUSION AND DISCUSSION

In summary, we have shown that the entropic
characterization of protein interaction networks can
account for a significant fraction of proteins, whose
removal results in a lethal phenotype.

In our framework, proteins are ranked according to
their contribution to network entropy, which is a
measure of microscopic uncertainty (pathway diver-
sity) and is correlated with the macroscopic robustness
of a dynamical system defined on the network. If only
structural information is provided, the ranking of a
protein depends on its overall position within the
network. This notion is in sharp contrast to other
characterizations of network elements based, for
example, on their local connectivity (degree). Our
analysis has shown that the entropic characterization is
also able to account for functional differences of
proteins with low or equal degree.

We employed several statistical methods and back-
ground models to assess the correlations between the
entropic-ranking scheme and phenotypic-lethality
data, and have carefully tested the observed corre-
lations against a number of possible errors. It is
important to re-iterate that, no method based on the
current large-scale interaction data can provide strong
predictive power for functional and context-dependent
properties, such as lethality. As it is a common practice
in this field, we take the observed correlation as an
indicator of a possible biological signal, which cannot
otherwise be explained and warrants further investi-
gation. Here, we introduced a new conceptual frame-
work, which provides a rationale to understand
macroscopic resilience in the light of microscopic
uncertainty, as characterized by entropy, rather than
structural network observables. From this perspective,
the observed enrichment of essential proteins in ranked
lists of proteins has a natural and clear interpretation:
proteins with higher contribution to cellular resilience
are more often essential. Heuristic constructs, such as
node degree, emerge as effective descriptors of
functional properties, but our work also illustrates
where one can go beyond such structural measures.
Retrospectively, and as illustrated by the examples in
the previous section, one might be tempted to account
for the entropic contribution by introducing some
‘effective degree’. We consider it an advantage that
our approach presents a natural way to introduce and
to extend structural concepts like degree. Moreover,
and in contrast to degree-based methods, our approach
is extendable to networks where more quantitative data
are available.

In the following, we want to point to possible
limitations of our approach. First, the phenotypic
assessment of a gene disruption is usually done for
one given condition and the observed correlation is
strictly with respect to this single condition. It has been
remarked that, the so-called viable proteins may
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actually play a significant role in untested environ-
ments and their disruption could cause lethal pheno-
types. An exhaustive study of all possible conditions is
clearly beyond experimental capabilities. Therefore, we
take the present lethality data as representative for
other conditions and implicitly assume that the
classification of lethal and viable proteins is at least
robust against environmental changes.

A related problem concerns the static representation
of interaction data, which discards all dynamical
dependencies. Just as many genes are expressed only
under specific conditions, we also should think of
different network realizations of an underlying blue-
print, which experimental interaction screens try to
establish.

Since the concept of entropy is based on the notion of
dynamical diversity of the microscopic processes
underlying the macroscopic cellular states, we believe
that this approach will ultimately be more fruitful than
network characterizations, which are solely based on
topology. Cellular robustness depends on the dynami-
cal properties and interconnections of many diverse
molecular networks. We should, however, stress that,
in the present application, we relied exclusively on
structural information for only a part of the complete
cellular network, namely protein—protein interactions.
Furthermore, we characterized the microscopic diver-
sity through a Markov process that maximizes the
entropy based on a Boolean adjacency matrix, rather
than quantitative information about transition rates.
Needless to say, actual processes may be different from
this representative one. To the extent that real
processes resemble the one defined in this work, we
can now better understand the importance of structural
network observables as correlates of dynamical proper-
ties. We expect that structural properties will become
less useful concepts for processes that deviate from the
one with maximal entropy. Our approach is a first
attempt to bridge these two domains and to address
structural and dynamical questions in a single
framework.

This situation can be likened to thermodynamics,
where some properties of large systems can be
effectively described by a number of macroscopic
parameters, regardless of our ignorance about the
microscopic processes. For equilibrium systems, this
simplification is made explicit through relations
between the Gibbs distribution over microstates and
various macroscopic properties that can be derived
from it (Gibbs 1901). Formally, our work builds on an
extension of the Gibbs formalism, which also applies to
non-equilibrium systems at steady state (Demetrius
1997; Ruelle 2004). This assumption is often made for
many classes of biological systems (e.g. in metabolic
flux analysis) and is the basis of empirical phenotype
classification. It does not hold for systems at develop-
mental branch points, where macroscopic observables
can change dramatically in response to environmental
and developmental signals. If these assumptions hold,
our approach should also apply to other complex
networks, and there is hope that some systemic
properties can be elucidated without having to resort
to microscopic details.
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